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Biomarker Detection & ValidationBiomarker Detection & Validation

Proteomics

Human Tissue
TMATranscriptomics

Clinical Trial

Metabolomics



TMA PreparationTMA Preparationpp

0.25μm0.25μm



Tissue Array SectionTissue Array Sectionyy

~700 Tissue
Samples

0.6 mm    0.2mm



TMA Spot with MIBTMA Spot with MIB--1 (KI1 (KI--67) Antigen67) Antigenpp (( ) g) g

1 image for each patient

40x magnification

resolution of 0.25μm

3000 x 3000 Pixels3000 x 3000 Pixels



From a qualitative to From a qualitative to 
 tit ti  i tit ti  ia quantitative sciencea quantitative science

At the beginning of the 21st century pathology is 
still a qualitative sciencequalitative science.
It relies purely on subjective estimationssubjective estimations by human 
experts.
The goal is to lead pathology from a qualitative to 
a quantitative sciencequantitative science.
Machine learning and computer vision are enabling enabling 
technique technique to achieve this ambitious goal.
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What is the „Ground Truth“?What is the „Ground Truth“?



Is there any „Ground Truth“?Is there any „Ground Truth“?



There isThere is



Generating a Gold StandardGenerating a Gold Standardgg

TMA EstimatorTMA Estimator TMA AnnotatorTMA Annotator TMA ClassifierTMA Classifier

Estimate the Staining on 
a whole Spot

Detect nuclei on a whole 
Spot

Classify single nuclei into 
tumor, non-tumor and stained, 
not-stained



TMA EstimatorTMA Estimator

Labeling Tool
for Pathologists 

 T bl t PCon Tablet PC



Estimated StainingEstimated Staininggg



TMA AnnotatorTMA Annotator



TMA AnnotatorTMA Annotator

2 pathologists
>2000 nuclei
15% detection mismatch



TMA Classifier TMA Classifier -- TumorTumor



TMA Classifier TMA Classifier -- StainingStaininggg



Inter Pathologists ConsensusInter Pathologists Consensusgg

180 nuclei 
randomly 
drawn from  
9 spots.

Agreement on 
105 nuclei.

non-tumor tumor



Intra Pathologist EvaluationIntra Pathologist Evaluationgg

Original Flipped & Rotated

50 nuclei were repeated flipped and rotated to test the intra pathologist variability.



Intra Pathologist Confusion MatrixIntra Pathologist Confusion Matrixgg

53/250
mismatches

Baseline: Intra-Pathologists classification uncertainty classification uncertainty of ~20%20%



Two Types of PathologistsTwo Types of Pathologistsyp gyp g



Two Types of PathologistsTwo Types of Pathologistsyp gyp g

15 mismatches 9 mismatches



IntraIntra--Pathologist AgreementPathologist Agreementg gg g

5/5 pathologists agreed on +3

+ + +

4/5 pathologists agreed on ±3

- -+ + + + +



IntraIntra--Pathologist MismatchesPathologist Mismatchesgg

283  302  739 1104 1454 1501 1689
4    3    3    3    3    3    3

138  209  386  605 1635 1936 2052 2125 2337
2    2    2    2    2    2    2    2    2



Comp. Path. FrameworkComp. Path. Frameworkpp

Training Feature Random Forest Nuclei Staining

+
+ + +

+
+ +

+

+
+

+

+

+

+
+

Training
Samples

Feature
Extraction

Random Forest
Learning

Nuclei
Detection

Staining
Estimation1 2 3 4 5

+
++ +

+

+
++

+
+

+
+

+ +

+
+

+
+

+
+

+
+

+

+
+

+
+

+

+
+

++

+
+

+
+

++

p = 0.043 p = 0.026

Application to
Patient Cohort

Estimated
Marker Distribution

Survival
Analysis6 7 8



Comp. Path. FrameworkComp. Path. Frameworkpp

Training Feature Random Forest Nuclei Staining

+
+ + +

+
+ +

+

+
+

+

+

+

+
+

Training
Samples

Feature
Extraction

Random Forest
Learning

Nuclei
Detection

Staining
Estimation1 2 3 4 5

+
++ +

+

+
++

+
+

+
+

+ +

+
+

+
+

+
+

+
+

+

+
+

+
+

+

+
+

++

+
+

+
+

++

p = 0.043 p = 0.026

Application to
Patient Cohort

Estimated
Marker Distribution

Survival
Analysis6 7 8



Cell Nuclei DetectionCell Nuclei Detection

Random Forest with 20 features per splitRandom Forest with 20 features per split.
Fast convergence.
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Non Maxima SuppressionNon Maxima Suppressionpppp



Mean Shift with Circular KernelMean Shift with Circular Kernel



Cell Nuclei DetectionCell Nuclei Detection
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Estimation DistributionsEstimation Distributions
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Survival AnalysisSurvival Analysisyy

p = 0.043 p = 0.026



Survival AnalysisSurvival Analysisyy
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Thank you for your attention!

Questions?

thomas.fuchs@inf.ethz.ch


